# ST. JOSEPH'S COLLEGE, DEVAGIRI, CALICUT (AUTONOMOUS)



# POST GRADUATE DEGREE PROGRAMME

# ST. JOSEPH'S CHOICE BASED CREDIT SEMESTER SYSTEM (SJCBCSSUG)

# MASTER OF SCIENCE IN MATHEMATICS

Course Outcome (2019Admn Onwards)

# **COURSE OUTCOMES**

# CORE COURSES

## SEMESTER I FMTH1C01: ABSTRACT ALGEBRA

| COs | COURSE OUTCOMES                                 |
|-----|-------------------------------------------------|
| CO1 | Learn factor group computation.                 |
| CO2 | Understand the notion of group action on a set. |
| CO3 | Learn Sylow theorems and its applications.      |
| CO4 | Understand the notion of free groups.           |
| CO5 | Understand the concept rings of polynomials     |
| CO6 | Learn group presentation.                       |

#### **SEMESTER I** FMTH1C02: LINEAR ALGEBRA

| COs | COURSE OUTCOMES                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn basic properties of vector spaces.                                                                                |
| CO2 | Understand the relation between linear transformations and matrices.                                                    |
| CO3 | Understand the concept of diagonalizable and triangulable operators and various fundamental results of these operators. |
| CO4 | Understand Primary decomposition Theorem.                                                                               |
| CO5 | Learn basic properties inner product spaces.                                                                            |

## **SEMESTER I** FMTH1C03: REAL ANALYSIS I

| COs | COURSE OUTCOMES                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn the topology of the real line                                                                                 |
| CO2 | Understand the notions of Continuity, Differentiation and Integration of real functions                             |
| CO3 | Learn Uniform convergence of sequence of functions, equicontinuity of family of functions, and Weierstrass theorems |
|     |                                                                                                                     |

# **SEMESTER I** FMTH1C04: DISCRETE MATHEMATICS

| COs | COURSE OUTCOMES                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand the fundamentals of Graph Theory                                                                          |
| CO2 | Learn the structure of graphs and familiarize the basic concepts to analyze different problems in different branches |
| CO3 | Acquire a basic knowledge of formal languages, grammar and automata                                                  |
| CO4 | Learn equivalence of deterministic and nondeterministic finite accepters                                             |
| CO5 | Learn the concepts of partial order relation and total order relation                                                |

# **SEMESTER I** FMTH1C05: NUMBER THEORY

| COs | COURSE OUTCOMES                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------|
| CO1 | Be able to effectively express the concepts and results of number theory                                           |
| CO2 | Learn basic theory of arithmetical functions and Dirichlet multiplication, averages of some arithmetical functions |
| CO3 | Understand distribution of prime numbers and prime number theorem.                                                 |
| CO4 | Learn the concept of quadratic residues and Quadratic reciprocity laws.                                            |
| CO5 | Get a basic knowledge in Cryptography                                                                              |

## **SEMESTER II** FMTH2C06: GALOIS THEORY

| COs | COURSE OUTCOMES                                      |
|-----|------------------------------------------------------|
| CO1 | Get a basic knowledge in Galois Theory               |
| CO2 | Learn how to apply Galois Theory in various contexts |
| CO3 | Learn different types of extensions of fields        |
| CO4 | Learn automorphisms of fields                        |

# SEMESTER II FMTH2C07 REAL ANALYSIS II

| COs | COURSE OUTCOMES                                             |
|-----|-------------------------------------------------------------|
| CO1 | Learn why and for what the theory of measure was introduced |
| CO2 | Learn the concept of measures and measurable functions      |
| CO3 | Learn Lebesgue integration and its various properties       |
| CO4 | Learn how to generalize the concept of measure theory.      |
| CO5 | Learn that a measure may take negative values.              |

## **SEMESTER II** FMTH2C08: TOPOLOGY

| COs | COURSE OUTCOMES                                                                                                                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Be proficient in the abstract notion of a topological space, where continuous function are defined in terms of open set not in the traditional $\varepsilon - \delta$ definition used in analysis                      |
| CO2 | Realize Intermediate value theorem is a statement about connectedness, Bolzano weierstrass theorem is a theorem about compactness and so on                                                                            |
| CO3 | Learn the concept of quotient topology                                                                                                                                                                                 |
| CO4 | Learn five properties such as T0, T1, T2, T3 and T4 of a topological space X which express how rich the open sets is. More precisely, each of them tells us how tightly a closed subset can be wrapped in an open set. |

#### **SEMESTER II** FMTH2C09: ODE AND CALCULUS OF VARIATIONS

| COs | COURSE OUTCOMES                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn the existence of uniqueness of solutions for a system of first order ODEs                                                     |
| CO2 | Learn many solution techniques such as separation of variables, variation of parameter power series method, Frobeniious method etc. |
| CO3 | Learn method of solving system of first order differential calculus equations                                                       |
| CO4 | Get an idea of how to analyze the behavior of solutions such as stability, asymptotic stability etc.                                |
| CO5 | Get a basic knowledge of Calculus of variation                                                                                      |

#### **SEMESTER II** FFMTH2C10: OPERATIONS RESEARCH

| COs | COURSE OUTCOMES                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn graphical method and the simplex algorithm for solving a linear programming problem                                           |
| CO2 | Learn more optimization techniques for solving the linear programming models transportation problem and integer programming problem |
| CO3 | Learn optimization techniques for solving some network related problems.                                                            |
| CO4 | Learn sensitivity analysis and parametric programming, which describes how various changes in the problem affect its solution       |

#### **SEMESTER III**

FMTH3C11: MULTIVARIABLE CALCULUS AND GEOMETRY

| COs | COURSE OUTCOMES                                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Be proficient in differentiation of functions of several variables.                                                                                  |
| CO2 | Understand curves in plane and in space.                                                                                                             |
| CO3 | Get a deep knowledge of Curvature, torsion, Serret-Frenet formulae                                                                                   |
| CO4 | Learn Fundamental theorem of curves in plane and space.                                                                                              |
| CO5 | Learn the concept of Surfaces in three dimension, smooth surfaces, surfaces of revolution                                                            |
| CO6 | Learn explicitly tangent and normal to the surfaces                                                                                                  |
| CO7 | Get a thorough understanding of oriented surfaces, first and second fundamental forms surfaces, gaussian curvature and geodesic curvature and so on. |

#### SEMESTER III FMTH3C12: COMPLEX ANALYSIS

| COs | COURSE OUTCOMES                                                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn the concept of (complex) differentiation and integration of functions defined on the complex plane and their properties |
| CO2 | Be thorough in power series representation of analytic functions, different versions of Cauchy's Theorem.                     |
| CO3 | Get an idea of singularities of analytic functions and their classifications                                                  |
| CO4 | Learn different versions of maximum modulus theorem                                                                           |

# **SEMESTER III** FMTH3C13: FUNCTIONAL ANALYSIS

| COs | COURSE OUTCOMES                                                               |
|-----|-------------------------------------------------------------------------------|
| CO1 | Learn the concept of normed linear spaces and Hilbert spaces.                 |
| CO2 | Learn various properties operators defined on both normed and Hilbert spaces. |
| CO3 | Understand the concept dual space.                                            |
| CO4 | Learn the completeness of the space bounded linear operators                  |

## **SEMESTER III**

# **FMTH3C14: PDE AND INTEGRAL EQUATIONS**

| COs | COURSE OUTCOMES                                                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn a technique to solve first order PDE and analyse the solution to get information<br>about the parameters involved in the model                          |
| CO2 | Learn explicit representations of solutions of three important classes of PDE Heat equations<br>Laplace equation and wave equation for initial value problems |
| CO3 | Get an idea about Integral equations                                                                                                                          |
| CO4 | Learn the relation between Integral and differential Equations                                                                                                |

# **SEMESTER III** FMTH3E01: ELECTIVE: CODING THEORY

| COs | COURSE OUTCOMES                                                                                          |
|-----|----------------------------------------------------------------------------------------------------------|
| CO1 | The basics of coding theory.                                                                             |
| CO2 | Learn to detect and correct the error patterns.                                                          |
| CO3 | Learn to implement the fundamental concepts in linear algebra to coding theory                           |
| CO4 | Understand about different types of coding and decoding methods and develop the problem solving ability. |
| CO5 | Attain the skills to represent cyclic codes in terms of polynomials                                      |

# **SEMESTER III** FMTH3E02: ELECTIVE: CRYPTOGRAPHY

| COs | COURSE OUTCOMES                                                                                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand the fundamentals of cryptography and cryptanalysis                                                                                                                                             |
| CO2 | Acquire a knowledge of Claude Shanon's ideas to cryptography, including the concepts of perfect secrecy and the use of information theory to cryptography                                                 |
| CO3 | Learn to use substitution -permutation networks as a mathematical model to introduce<br>many of theconcepts of modern block cipher design and analysis including differential<br>and linear ryptoanalysis |
| CO4 | Familiarize different cryptographic hash functions and their application to the construction of message authentication codes                                                                              |

#### **SEMESTER III**

### **FMTH3E03: ELECTIVE: MEASURE AND INTEGRATION**

| COs | COURSE OUTCOMES                                                                                                                                                                                                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn how a measure will be helpful to generalize the concept of an integral                                                                                                                                                                                                                                 |
| CO2 | Learn how a smallest sigma algebra containing all open sets be constructed on a topological space which ensures the measurability of all continuous function and how a measure called Borel measure is defined on this sigma algebra which ensures the integrability of a huge class of continuous functions |
| CO3 | Understand the regularity properties Borel measures.                                                                                                                                                                                                                                                         |
| CO4 | Realize a measure may take real values even complex values.                                                                                                                                                                                                                                                  |
| CO5 | Learn to characterize bounded linear functionals on Lp.                                                                                                                                                                                                                                                      |
| CO6 | Learn product measure and their completion                                                                                                                                                                                                                                                                   |

#### **SEMESTER III** FMTH3E04: ELECTIVE: PROBABILITY THEORY

| COs | COURSE OUTCOMES                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand the concept of random variables, probability and distribution function of a random variable           |
| CO2 | Apply the knowledge of convergence a sequence of random variables almost surely, in probability and distribution |
| CO3 | Apply the knowledge of central limit theorem in relevant situations                                              |
| CO4 | Develop problem solving techniques to solve real world problems                                                  |
| CO5 | Able to translate real world problems into probability models                                                    |
| CO6 | Evaluate and apply moments and characteristic functions and understand the concept of inequalities               |

# **SEMESTER III** FMTH3E05: ELECTIVE: GRAPH THEORY

| COs | COURSE OUTCOMES                                           |
|-----|-----------------------------------------------------------|
| CO1 | Learn different types of graphs                           |
| CO2 | Learn the concept matching in graphs and related results. |
| CO3 | Understand what is meant by coloring                      |
| CO4 | Learn Planar Graphs                                       |

#### **SEMESTER IV**

# FMTH4C15: ADVANCED FUNCTIONAL ANALYSIS

| COs | COURSE OUTCOMES                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand the notions of Fredholm theory of compact Operators and their properties                                |
| CO2 | Apply the theory to understand and solve some problems of integral equations at an appropriate level of difficulty |
| CO3 | Describe the construction of the spectral integral.                                                                |
| CO4 | Recognize the fundamentals of Banach spaces and Banach Algebras                                                    |

#### **SEMESTER IV**

# FMTH4E06: ELECTIVE: ADVANCED COMPLEX ANALYSIS

| COs | COURSE OUTCOMES                                                                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Get a deep knowledge about the space of continuous functions from an open set in the complex plane to a region of the complex plane                                                 |
| CO2 | Learn a technique to extend the domain over which a complex analytic function is defined                                                                                            |
| CO3 | Understand that there is a unique conformal map f of the unit disk onto a simply connected domain of the extended complex plane such that $f(0)$ and $\arg f'(0)$ take given values |
| CO4 | Express some functions as infinite series or products                                                                                                                               |

#### **SEMESTER IV**

# **FMTH4E07: ELECTIVE: ALGEBRAIC NUMBER THEORY**

| COs | COURSE OUTCOMES                                                                                                                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand that abstract algebra may be used to solve certain problems in Number Theory                                                                                                                                 |
| CO2 | Learn about arithmetic of algebraic number fields                                                                                                                                                                       |
| CO3 | Understand that the familiar unique factorization property may fail in the case of ring of integers of some quadratic fields while a unique factorization theory holds for ideals of ring of integers of a number field |
| CO4 | Learn finiteness of class numbers                                                                                                                                                                                       |
| CO5 | Understand that the notions of algebraic numbers may be applied to prove Kummer's special case of Fermat's Last Theorem                                                                                                 |

# **SEMESTER IV** FMTH4E08: ELECTIVE: ALGEBRAIC TOPOLOGY

| COs | COURSE OUTCOMES                                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn how basic geometric structures may be studied by transforming them into algebraic questions                                                                |
| CO2 | Learn basics of homology theory and apply it to get a generalization of Eulers formula to a general polyhedral.                                                  |
| CO3 | Learn to associate a group called fundamental group to every topological space.                                                                                  |
| CO4 | Learn that two objects that can be deformed into one another will have the same<br>homology group and that homemorphic spaces have isomorphic fundamental groups |
| CO5 | Learn Brouwer fixed point theorem and related results                                                                                                            |

#### **SEMESTER IV**

#### **FMTH4E09: ELECTIVE: COMMUTATIVE ALGEBRA**

| COs | COURSE OUTCOMES                                                                   |
|-----|-----------------------------------------------------------------------------------|
| CO1 | Basic properties of commutative rings, ideals and modules over commutative rings, |
| CO2 | Learn uniqueness theorem for a decomposable ideal.                                |
| CO3 | Learn integrally closed domain and valuation ring.                                |
| CO4 | Understand the basic theory of Noetherian and Artin Rings                         |

#### **SEMESTER IV**

# **FMTH4E10: ELECTIVE: DIFFERENTIAL GEOMETRY**

| COs | COURSE OUTCOMES                                                                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand how calculus of several variables can be used to develop the geometry of n-dimensional oriented n- surface in $\mathbb{R}$ |
| CO2 | Understand locally n- surfaces and parametrized n- surfaces are the same                                                              |
| CO3 | Develop a knowledge of the Gauss and Weingarten maps and apply them to apply them to describe various properties of surfaces          |

#### **SEMESTER IV**

# FMTH4E11: ELECTIVE: FLUID DYNAMICS

| COs | COURSE OUTCOMES                                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn the concept of Equation of Motion and how they relate the dynamics of flow to the pressure and density fields         |
| CO2 | Learn the concepts of streaming motions and Aerofoils                                                                       |
| CO3 | Learn the concepts of Sources and Sinks                                                                                     |
| CO4 | Get an idea of Stream function and its uses to plot stream lines which represent trajectories of particles in a steady flow |

# **SEMESTER IV**

# **FMTH4E13: ELECTIVE: REPRESENTATION THEORY**

| COs | COURSE OUTCOMES                                                              |
|-----|------------------------------------------------------------------------------|
| CO1 | Learn the concept of G-Modules and commutant algebra.                        |
| CO2 | Learn the concepts of orthogonality relations and the finite abelian groups. |
| CO3 | Learn the concepts of induced representations and normal subgroups           |

# **SEMESTER IV** FMTH4E14: ELECTIVE: WAVELET THEORY

| COs | COURSE OUTCOMES                                                            |
|-----|----------------------------------------------------------------------------|
| CO1 | Learn the concept of discrete Fourier Transforms and its basic properties. |
| CO2 | Learn how to construct Wavelets on $\mathbb{Z}_N$ and $\mathbb{Z}$ .       |
| CO3 | Learn Wavelets on $\mathbb{R}$ and construction of MRA                     |